Dept of Mathematics
Online examination Nov-2020.
Semester III- Parer- II- Algebra
Sample questions

1. Let $S=\{(1,0)(1,1)\}$ in R^{2} with usual dot product. Consider the following:
(i) S is a linearly independent set.
(ii) S is an orthogonal set
(iii) S is an orthonormal set
a) Only (i) is true
b) (i) and (ii) are true
c) (i), (ii) and (iii) are all true
d) None of these
2. Let $V=\operatorname{Mn}(\mathrm{R}), \mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ be the map defined by $\mathrm{T}(\mathrm{A})=\left(\mathrm{A}+\mathrm{A}^{\mathrm{T}}\right) / 2$, then
a) T is not linear
b) T is not linear
c) T is a linear with dim ker $\mathrm{T}=$ space of skew symmetric matrices
d) none of above.
3. Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation and $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ be linear independent subset of V then $\left\{\mathrm{T}\left(\mathrm{v}_{1}\right), \mathrm{T}\left(\mathrm{v}_{2}\right), \ldots, \mathrm{T}\left(\mathrm{v}_{\mathrm{n}}\right)\right\}$
a) is always linearly independent
b) may not be linearly independent
c) is always linearly dependent
d) none of these
4. The standard basis of \mathbf{R}^{4} is
a) orthogonal basis but not orthonormal
b) not an orthogonal basis
c) orthonormal basis
d) None of these
5. Let $\mathrm{T}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the map defined by $\mathrm{T}(\mathrm{x}, \mathrm{y})=(\mathrm{x}+2 \mathrm{y}, \mathrm{x}-2 \mathrm{y})$ Then
a) T is an invertible linear map
b) T is not a linear map
c) T is a linear map but not surjective
d) T is a linear map but not injective.
6. Which of the following is true?
a) determinant is n -linear but not skew symmetric
b) determinant is not n -linear but skew symmetric
c) determinant is n-linear and skew symmetric
d) determinant is neither n-linear nor skew symmetric
7. Let $A \in M_{3}(R)$ and $k \in R$. Then $\operatorname{det}(\mathrm{kA})=$
a) $k \operatorname{det} A$
b) $-\mathrm{k} \operatorname{det} \mathrm{A}$
c) $(3 \mathrm{k}) \operatorname{det} \mathrm{A}$
d) $\mathrm{k}^{3} \operatorname{det} \mathrm{~A}$
8. Cramer's rule is used to
a) Find solution of homogeneous system of linear equations
b) Find the unique solution of non- homogeneous system of linear equations.
c) Find determinant of the matrix
d) Find inverse of the matrix
9. The set $S=\{(1,0,0),(0,1,0),(0,0,1)\}$ in \mathbf{R}^{3} is
a) orthogonal but not orthonormal,
b) orthonormal
c) not an orthogonal basis
d) none of these.
10. Which of the following is an inner product on $\mathbf{R}^{2} ? x=\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$
a) $<x, y>=\left(x_{1}+x_{2}\right) y_{1}+\left(y_{1}+y_{2}\right) x_{2}$
b) $\langle x, y\rangle=x_{1} y_{1}+x_{2} y_{2}$
c) $<x, y>=x_{1} y_{1}-x_{2} y_{2}$
d) $\langle x, y\rangle=x_{1} y_{2}+x_{2} y_{1}$
